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the most capable to carry out the inspection of the composite rail carbody. The shortlisted 
techniques are the following. 
Table 1. NDT shortlisted techniques in D1.1 

Infrared Thermography Ultrasonic testing 

Pulse thermography 

Lock-in Thermography 

Step heating 

Eddy current thermography 

Phased-Array / Pulse Echo  

Laser ultrasonic testing 

Resonance method 

Finally, D 1.1. presents high-level requirements (section 4) and specifications for the 
prototype thermography and ultrasonic testing inspection system (section 5) that is one of 
the main aims of GEARBODIES project according to the use cases that are presented in 
section 3.2.  The requirements, describe the creation of a prototype system that will inspect 
a rail body during its maintenance phase and shall be able to detect surface impact-
damage/delamination/de-bonding/crack-fracture/water ingress on the sides of composite 
carbody, only from the outside section of the vehicle and within a time period of 12hours. 
The inspection system shall be able to cover a variety of carbody materials that were 
assumed based on literature and partial input received form PIVOT2 project. Specifically, 
for the sandwich types of composites the combinations will be carbon fibre or Reinforced 
Polymer (GRP) skins with polyethylene terephthalate (PET) foam or alternatively with 
aluminium core. For the monolithic materials a CFRP and a GRP variant are proposed. The 
overall thickness of the materials is expected to be up to 50mm. 

It is important to highlight that requirements will be revised as the project progresses and 
further input is received from PIVOT2 project regarding the composite carbody. In the same 
manner some of the specifications will be also revised as well after further experimentation 
in lab and field environment. 
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specifications are further defined for the carbody inspection system and its components 
and sub-systems; these will require further elaboration after the completion of the 
simulations in D 2.1. which would enable a proper analysis and comparison of the potential 
inspection techniques that are identified and discussed in D1.1. 
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Figure 5. Delamination defect on composite materials 

 
Source: Heslehurst (2014;35) 

Delaminations: One of the most common types of damage in composites. They are matrix 
defects where matrix cracks propagate between or within a laminate and where cracks run 
parallel to the fibre direction. This type of damage can be caused by: impact damage where 
internal failure occurs, free edges or matrix cracks where a ply interfaces. 

Impact damage: Describes damage caused by impact on the material while the penetration 
depends on the amount of energy level of the projectile object. Impact damage can be 
significant, because it can be barely visible on the impact side but considerable on the other 
side. This is often called blind side impact damage as seen at the bottom of Figure 6.  
Figure 6. Impact damage at various energy levels 

 
Source: Heslehurst (2014;39) 

The indentation on composite structures by impact is typically permanent although the 
indentation depth can diminish over time making the damage harder to be detected 
(Baaran, 2009). Figure 7 shows on the left, an example of impact damage and the effect 
that can be caused in the core and back surface (right).  
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Figure 7. Impact damage and effect 

 
Source: Heslehurst (2014;35) (left), Angelika Wronkowicz-Katunin and Dragan (2018;84) (right) 

Crushing: Crushing can be caused to a composite material by impact damage and is more 
common to sandwich structures. Although, surface damage could be small with small 
visible matrix cracks and fibre fracture on the outer surface, the material core can have 
significant crushing as shown in Figure 8.  
Figure 8. Crushing damage of composite sandwich core 

 
Source: Heslehurst (2014;36) 

Water ingress: Water or moisture can penetrate a composite sandwich structure through 
edge seals, micro cracks on the surfaces, or by diffusion through the skin by Flicks law 
(Rastogi, 2016) (see Figure 9). The effect of water is that it degrades the strength and 
composition of the composite structure by reducing its residual strength while also being 
able to cause interlaminar cracks (Rastogi, 2016). Furthermore, it can cause loss of 
stiffness and strength at lower temperatures or swelling of polymers causing additional 
stresses like thermal expansion. Furthermore, water can cause damage to the adhesive 
between core and surface sheets though hydrolysis (Rastogi, 2016).  
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specimen in monitored (Ibarra-Castanedo et al. 2009; Lahiri et al. 2012). Typical 
applications of passive thermography include cases where the specimen has higher or 
lower temperature than its environment such as inspection of buildings, masonry walls and 
concrete structures (Moropoulou, 2018), electricity transformers (Maldaque, 2001) or even 
monitoring of composite helicopter rotor blades from ground level (Yang and He, 2016). 
Figure 10. Thermogram of building taken using passive thermography 

 
Source: Wikipedia (2021) 

Active thermography on the other hand requires an external excitation source to create a 
temperature difference between the defective and non-defective parts of the specimen 
(Ibarra-Castanedo et al. 2009; Avdelidis, 2004). Typical excitation sources can be optical, 
mechanical, electromagnetic, or other excitation forms such as photographic flashes, 
halogen lamps, mechanical oscillators, ultrasonic and sonic transducers (Ibarra-Castanedo 
et al. 2009), heat gun, hot water jets, hot air jets, or a hot water bag (Yang and He, 2016). 

D 1.1 will specifically focus on the Active Infrared thermography methods due to the nature 
of the inspection of the proposed composite rail carbody NDT system. 

3.1.1.2 Active Thermography methods 

Active thermography methods are classified by the excitation method and can be 
summarised into the following categories according to Ibarra-Castanedo et al. (2009) as 
seen in Figure 11.These excitation methods are classified according to the type of energy 
that is used. 
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Figure 11. Active thermography methods 

 
Source: Ibarra-Castanedo et al. (2009;2) 

Reflection/Transmission observation methods 
Two methods exist depending on how the heating process of the specimen is observed by 
the thermographic camera. In reflection configuration, both thermal source and the IR 
camera are on the same side of the specimen while in transmission, the thermal source 
and the camera are on opposite sides (see Figure 12). The two configurations do not offer 
the same level of possibility for detection nor level of details. Transmission mode is also 
limited to access of the inspection area especially in cases where the back side of the 
specimen in inaccessible. In addition, transmission mode allows thicker materials to be 
inspected although the depth information is lost due to the distance that the thermal front 
has to travel (Maldaque, 2001). Due to the latter resolution is also weaker and requires more 
sensitive IR camera (Maldaque, 2001). Reflection offers greater resolution but can be 
limited by thickness of the material (Maldaque,2001). In some case the combination (not at 
the same time) of the two can be used provide additional information about the position, 
lateral defect size and depth and amount of damage for a defect especially in composite 
materials like CFRP (Carbon Fibre Reinforced Polymer) (Maierhofer, 2014). 
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Figure 12. Experimental setup for active (optical) thermography inspection by Transmission and Reflection 
(only one at a time is used) 

 
Source: Visiooimage (2021) 

3.1.1.3 Optical methods 

Optical methods use light to excite the specimen for inspection, where light induces a heat 
flow that reaches the surface of the specimen and disturbs its thermal equilibrium 
(Ekanayake et al., 2017). The way that optical methods work is based on the speed of 
propagation of thermal waves through discontinuities in the specimen, causing the thermal 
wave to slow down or speed up depending on material properties (Ibarra-Castanedo et al., 
2009). Optical methods such as pulsed thermography (PT), lock-in thermography (LT), step 
thermography (ST), pulsed phase thermography (PPT), laser thermography [laser line 
thermography (LLT) & laser spot thermography (LPT) ]. 

3.1.1.3.1 Infrared Pulsed thermography  

Pulsed Thermography (PT) also referred to as flash thermography is one of the most 
commonly used methods in thermography Non-Destructive Testing (Maldaque, 2001; 
Ciampa et al., 2018). PT uses optical flash lamps to stimulate a specimen (Maierhofer et al. 
2014), with a pulse of energy that can last from a from few milliseconds to a few seconds, 
depending on the conductivity and material properties of the specimen (Maldaque, 2001). 
The thermal pulse from the optical flash will instantaneously heat the specimen surface 
and over time the heat will penetrate the material, producing asymptotic cooling (Chatterjee 
et al., 2011). The recorded infrared image sequences are analysed to enhance the visibility 
of the defect and its parameters (Vavilov and Burleigh, 2015). The presence of defects will 
reduce the diffusion rate of the thermal front once it has reached them and will cause 
temperature differences compared to the surrounding sound areas (Maldaque, 2001). 
Deeper defects will take normally longer to be revealed in the image sequences over time 
and will appear with reduced contrast (Yang and He, 2016).  

Pulsed thermography has the characteristics of fast detection speed, large detection area, 
and convenience for online detection. It can detect the defects such as debonding, crack, 
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3.1.1.5 Mechanical excitation methods 

3.1.1.5.1 Vibrothermography (VT) 

Vibrothermography (VT) is a method that utilises external mechanical vibrations to 
stimulate internal defects in a specimen, causing heat to be generated by friction in such 
areas where crack or delaminations exist (Ibarra-Castanedo et al., 2009). Depending on the 
type of excitation that vibrothermography uses, the techniques are classified differently.  

When ultrasound is used as excitation the technique is named Ultrasound Thermography 
or Thermoelastic stress analysis, which uses strain or stress as heat sources (Yang and He, 
2016). Damped acoustic waves propagate through the material to be inspected, causing 
the conversion of mechanical energy into thermal. Energy dissipation is bigger near the 
defects due to friction between the profile of the defect and/or stress concentration at the 
surrounding area causing temperature variation which can be detected with the use of an 
IR camera (Ciampa et al., 2018). The mechanical vibrations are usually induced at 0-50kHZ, 
by an ultrasonic transducer in the form of a sonotrode (also called horn) that is pressed 
against the specimen and acting as a hammer, while defects in a test sample require 
specific frequencies to reach resonance (Maldaque, 2001; Ciampa et al., 2018; Ibarra-
Castanedo et al., 2009). Consequently, changing the mechanical excitation frequency will 
cause local thermal gradients to appear or disappear revealing flaws that are visible under 
different frequencies (Maldaque, 2001). Depending on the ultrasonic excitation signal used, 
techniques can be classified into: 1) ultrasonic lock-in thermography using a continuous 
monochromatic elastic signal, 2) ultrasonic frequency modulated thermography with a 
chirp type signal (Ciampa et al., 2018) and 3) ultrasonic burst phase that uses short burst 
ultrasound signal. Figure 17 and Figure 18 shows the main components of 
vibrothermography setup. 
Figure 17. Setup of vibrothermography. 
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as laminated composite materials, fibre-reinforced composites, particle composites, with 
aluminum foam core, etc. As well as being a technique that does not involves any risk to 
the operator, it allows ultrasonic testing to be a great versatility technique in most industries 
both in manufacturing processes and in their service. 

In recent years, the ultrasound technique has undergone great advances in parallel with 
advances in computing and electronics, so that numerous techniques have appeared based 
on the same method that allow inspections to be carried out with much greater trust, 
significantly increasing capacity of detection, and reducing the false call rate, also 
highlighting the improvement of the precision in the measurements. On the other hand, 
these advances allow to minimize the human error factor, allowing that the data obtained 
during the inspections to be reproduced later and analyzed without the need to do it in-situ 
by just one operator, this also allows maintaining a history of the inspections that will allow 
to make comparisons between the periodic inspections carried out on the same 
component. 

Before going into further details about ultrasonic methods it should be worthy to explain 
how ultrasonic inspection works. 

Sound waves, which are all around us, are simply organized mechanical vibrations traveling 
through a medium, which may be a solid, a liquid, or a gas. This applies to both the everyday 
sounds that we hear and the ultrasound used for flaw detection. Sound waves will travel 
through a given medium at a specific speed or velocity, in a predictable direction, and when 
they encounter a boundary with a different medium they will be reflected or transmitted 
according to simple rules. This is the principle of physics that underlies ultrasonic flaw 
detection. In short, ultrasonic waves will reflect from cracks or other discontinuities in a test 
piece, so by monitoring the pattern of echoes in a part a trained operator can identify and 
locate hidden internal flaws. 

All sound waves oscillate at a specific frequency, or number of vibrations or cycles per 
second, which we experience as pitch in the familiar range of audible sound. Human hearing 
extends to a maximum frequency of about 20,000 cycles per second (20 KHz), while the 
majority of ultrasonic flaw detection applications utilize frequencies between 500,000 and 
10,000,000 cycles per second (500 KHz to 10 MHz). At frequencies in the megahertz range, 
sound energy does not travel efficiently through air or other gasses, but it travels freely 
through most liquids and common engineering materials like most metals, plastics, 
ceramics, and composites. Sound waves in the ultrasonic range are much more directional 
than audible sound, and because of their short wavelengths they are also far more sensitive 
to small reflectors that lie in their path. 

The speed of a sound wave varies depending on the medium through which it is traveling, 
affected by the medium's density and elastic properties. Different types of sound waves will 
travel at different velocities. 

A typical disposition for the elements of an ultrasonic testing system is showed in the 
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bellow figure: 
Figure 19. Typical UT diagram block 

 
Source: Olympus modified by DASEL 

As it is known, the ultrasound method requires coupling means available between the probe 
and the part to be examined that allows the transmission of sound into the material. When 
the inspection is carried out manually (it requires a lot of time and will not allow to have a 
record that offers the advantages described above) generally with a single transducer for 
measurements with pulse-echo techniques, a gel is commonly used as coupling mean 
between the transducer and the part to be examined. The use of a gel is particularly suitable 
when conducting inspections in the field, however, there are applications in which, due to 
the type of examination required or the incompatibility of the pieces to be examined with 
ultrasonic gels, other coupling means for testing are used such as water, oils, glycerin, etc. 

Even so, in some cases none of the coupling liquids are suitable, so there are techniques, at 
low frequencies, that allow coupling in air, usually for the use of this method, to have 
adequate signal resolution and good detection and sizing capacity, these techniques 
require access from both sides of the piece to be examined so it is not always possible. 

When none of the options described above are viable, some type of rubbers placed between 
the probe and the parts to be examined that allow the transmission of sound are used, it is 
the so-called wheel probe, the transducer is kept inside a rubber wheel, and the Sound 
travels to the part through the soft rubber tire. 

This method has some disadvantages compared to the liquid couplings, such as requiring 
higher levels of gain, although this is remedied by the hardware of the pulse generator 
equipment, however, this method is not satisfactory for areas where the wheel cannot lean 
entirely on the surface, encountering some difficulties when the surfaces have sharp 
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opposite; the material is relatively thick and low-density, and the issue of NDTs have not 
been considered until very recently in these materials.  

Therefore, NDT techniques and experience with them is not as extensive in core materials 
as in solid materials. 

3.1.1.6.1 Linear Phased Array (PA) (P-E) 

Linear Phased Array in Pulse Echo mode (is a mature technology widely used in the 
aeronautical industry for the inspection of composite materials (Olympus, 2007). It has the 
main advantage that it is scalable and allows to reduce mechanical movements, increasing 
the scanning speed by an order of magnitude. Technology currently standardized in the 
aeronautical industry. Although it is a focused technology for monolithic panels, it can be 
used for the detection of surface damage in sandwich structures. Regarding the 
penetration capacity and the detection of defects, we can modify parameters such as 
frequency, element size, type of excitation, etc (Schmerr, 2015). 

An example of inspection with phased array technology, (see Figure 20). The array 
transducer can adapt to complex surfaces and the image obtained allows the identification 
of defects inside the material from a few mm to several tens of mm. 

The systems are compact and can be easily integrated into a robotic platform. 
Figure 20. Example of inspection with Phased Array Technology 

Source: DASEL (2021) 

Another advantage is the amount of processing techniques that have currently been 
developed. The Post-processing techniques that can be used are very broad, highlighting 
(Autofocus, TFM, SPA, PCI, etc.) . 

- 
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